NIST DTSA-II ("Son of DTSA"): Step-by-Step

Dale E. Newbury (grateful user) National Institute of Standards and Technology Gaithersburg, MD 20899-8370

NIST-NIH Desktop Spectrum Analyzer (DTSA)

 \$ 	File	Edit	Analys	is Genera	ite Math	Headers	Display	Acquire	Help		9:58 A	м 🕴 🔛 і	DTSA 3.0.2
24283 T		Ch#: <mark>6</mark>	1 <mark>95</mark> Ch	kV: <mark>6.950</mark>	<mark>0</mark> Work:	253	Results:	0	Marker <mark>:</mark>	Cu 29	9		
										S C			
		<u></u>									L		
0.00		2.00	4 00. kou /0	.00 	6.00 /201-X 0.20	8.00	10.00	12.0	00 14	.00	16.00	18.00	20.00
		Calib	zo kev/d	Real 0	Click at	Point in	DketFerr	Distance 1	Scale 🖲 Lir	lear			
MLL Simp Do a Add	SQ SQ Fit Fit Fit	Calcu Calcu Copy Copy Save	k ID Ilator Work Rsit	0 0 Input Output	 Spectru Expa Control Expa Control Swap 	im to: nd Horiz ract Horiz nd Vert ract Vert Wk & Rsit	KLM KL Select Sp	ectrum:		g r Root polar ito Scale	■ 7//33 Re: ■ 3//33	edit.	Trash

Spectral Simulation with DTSA

Photon Energy (keV)

For 16 years, I have heard: "When will you have DTSA for the pc?"

 Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).

- Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).
- DTSA ran only on Macintosh, and then only up to system 10. (New Macs won't run DTSA) A painful question heard many, many times:
 When will you have DTSA for the pc? DTSA-II is the long awaited answer!!

- Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).
- DTSA ran only on Macintosh, and then only up to system 9. (New Macs won't run DTSA) A painful question heard many, many times:
 When will you have DTSA for the pc? DTSA-II is the long awaited answer!!
- DTSA-II is written in Java and operates on Mac, pc, UNIX, Linux.

- Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).
- DTSA ran only on Macintosh, and then only up to system 10. (New Macs won't run DTSA) A painful question heard many, many times:
 When will you have DTSA for the pc? DTSA-II is the long awaited answer!!
- DTSA-II is written in Java and operates on Mac, pc, UNIX, Linux.
- DTSA-II is **NOT** DTSA! Nicholas started from scratch and used DTSA as a guide to develop DTSA-II.

- Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).
- DTSA ran only on Macintosh, and then only up to system 10. (New Macs won't run DTSA) A painful question heard many, many times:
 When will you have DTSA for the pc? DTSA-II is the long awaited answer!!
- DTSA-II is written in Java and operates on Mac, pc, UNIX, Linux.
- DTSA-II is **NOT** DTSA! Nicholas started from scratch and used DTSA as a guide to develop DTSA-II.
- DTSA-II is being continually improved and the latest version can be downloaded for free at http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html

🖉 NIST DTSA-II - Windows Inte	rnet Explorer							
🕞 🕞 - 🙋 http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html								
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> o	ools <u>H</u> elp							
👷 🕸 🔡 🗸 🖁 Google	🖲 The Ne 🔯 APOD: 🏈 NIST Vi 🕨 Inside	🥫 NIST D 🥫 NIST D 🙋 NIS 🗙	🔄 🔄 🔹 📾 👻 🖶 🖬 Page 🕇	r 🍥 T <u>o</u> ols 👻 🤌				
Chemical Science and Te Surface and Micr	chnology Laboratory roanalysis Science Division	National Institute of Standards and Technology						
DTSA-11			Son of DeskTop Spectrum	Analyzer				
Geek								
DTSA-II is a multiplatform software package for quantitative x-ray microanalysis. DTSA-II was inspired by the popular Desktop Spectrum Analyzer (DTSA) package developed by Chuck Fiori, Carol Swyt-Thomas, and Bob Myklebust at NIST and NIH in the '80's and early '90's.								
Introduction Installation	DTSA-II has being designed with the goal of ma microanalyst. <i>We want to encourage standard</i> . Many operations which had previously required	iking standards-based microanalysis more s-based analysis by making it as easy a user intervention under DTSA now are pe	accessible for the novice s possible to get reliable results erformed entirely by the software.					
<u>Getting Started</u> <u>Simulation</u> <u>Quantification</u>	sanity checks. While this might not provide the fluis more consistent with the way laboratories are experts in single techiques. We encourage users	exibility that some sophisticated users may moving towards technicians responsible for who desire the additional power and flexi	sses while performing quarty con y desire, we feel that this philosop or multiple techniques and away fi bility available in the EPQ library	hy irom to				
<u>Why Java?</u> <u>3rd Party Licenses</u>	learn to script using Jython or to create their own exposed via DTSA-II.	n alternative user interface. EPQ is much r	nore capable than the fraction					
<u>Contact Us</u>	DTSA-II is based on an entirely new code base into a shared algorithm library which forms the b the user interface shell and the EPQ library is the	written by Nicholas W. M. Ritchie. The o asis for a handful of software products an algorithm library.	odebase has been carefully divid d a user interface shell. DTSA-II	ed is				
NIST Home Page	CSTL Home Page	SMSD Home Page	NISTMonte Home Pag	ge				
DISCLAIMER: Any mention	n of commercial products is for information on	ly; it does not imply recommendation o	r endorsement by NIST nor doe	es it imply tha				
	the products mentioned are nece	essarily the best available for the purpo	se.					
Done			Secol intranet	💐 100% 🔻 //.				
🏄 Start 🛛 🕜 E े I 📰	N 🔢 J 🖻 S 🗷 M 🌈 N 🏂 A	🖲 M 🎇 I 🛓 I 🙆 C 🕎 M	🕑 🏼 🏉 » 🖫 🗞 🥵	🏂 🧟 9:04 AM				

- Created by Nicholas Ritchie of NIST (nicholas.ritchie@nist.gov), inspired by NIST-NIH Desktop Spectrum Analyzer (DTSA) invented 1990-92 by Chuck Fiori (NIH and NIST) and Carol Swyt-Thomas (NIH), and then further developed by Carol and Bob Myklebust (NIST).
- DTSA ran only on Macintosh, and then only up to system 10. (New Macs won't run DTSA) A painful question heard many, many times:
 When will you have DTSA for the pc? DTSA-II is the long awaited answer.
- DTSA-II is written in Java and operates on Mac, pc, UNIX, Linux.
- DTSA-II is **NOT** DTSA! Nicholas started from scratch and used DTSA as a guide to develop DTSA-II.
- DTSA-II is being continually improved and the latest version can be downloaded for free at http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html
- Tools currently embedded in DTSA-II:

MAJOR FEATURES:

Basic IO and Display

- Read energy dispersive x-ray spectra in a variety of different commercial and non-commercial formats including the industry standard EMSA format
- o Display and overlay spectra with various scaling options on linear/log/sqrt axes
- o Copy/save/print the spectrum display as a bitmap/PNG file
- o Output the spectra as a GNUPlot file for publication quality output
- o Overlay labeled x-ray emission lines and x-ray absorption edges
- Define and integrate regions-of-interest
- View spectrum contextual information
- o Archive spectra to a searchable database
- o Sub-sampling of spectral data to simulate shorter acquisition times

Basic operations

• Opening and manipulating spectral files

Display and overlay spectra with various scaling options on linear/log/sqrt axes

Welcome to NIST DTSA-II version 1695

Display and overlay spectra with various scaling options on linear/log/sqrt axes

Welcome to NIST DTSA-II version 1695

But wait!

But wait!

• A brilliant feature, the "Report" is going to record your actions. A daily diary of actions (file named by date) is automatically saved.

C:\Documents and Settings\ne	ewbu	ry\My Docum	ents\DT5A2 Repo	orts\2008\	August			_	
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> od	Eile Edit View Favorites Tools Help							N	
🔇 Back 👻 🕥 👻 🤣 🔎 Search	😋 Back 👻 🕤 🖌 🏂 Search 🜔 Folders 🛛 🎛 🗸								
Address 🛅 C:\Documents and Settin	Address 🛅 C:\Documents and Settings\newbury\My Documents\DTSA2 Reports\2008\August								
	▲ P	Name 🔺			Size Type			Date Modified	
File and Folder Tasks 🔗		12-Aug-200		File Folder			8/12/2008 2:30 PM		
		13-Aug-2008			File Folder			8/13/2008 4:32 PM	
💋 Make a new folder					File Folder			8/14/2008 8:54 AM	
😂 Share this folder					File Folder		lder	8/15/2008 9:04 AM	
		18-Aug-2008			File Folder			8/20/2008 4:10 PM	
	i i	C Aug-2008			File Folder File Folder			8/22/2008 3:54 PM	
Other Places 🕆								8/25/2008 4:12 PM	
2008	τl	26-Aug-200	3			File Folder		8/27/2008 10:45 AM	
8 objects		0 bytes					🥥 My Computer		
		Jments and Settings\newbury\My Documents\DTSA2 Reports\2008\August\14-Aug-2008							
			Name 🔺			Size	Туре	Date Modified	
he Report is a great		Tasks 🌣	🥑 index1.html		36 KB	36 KB	HTML Document	8/14/2008 4:34 PM	
ne repertie a great		folder	mc_spec61299.em	sa		16 KB	EMSA File	8/14/2008 8:30 AM	
eature for those of us	:	older	mc_spec61300.em	sa		12 KB	B EMSA File B Emsa Filo	8/14/2008 8:32 AM	
			mc_spec61301.em	sd ca		12 KD 12 KB	EMSA File	0/14/2000 0:35 AM 8/14/2008 8:38 AM	
pproaching geezerno	oa.		mc_spec61303.em	sa		12 KB	EMSA File	8/14/2008 8:40 AM	
		*	mc_spec61304.em	sa		12 KB	EMSA File	8/14/2008 8:41 AM	
			🔤 mc_spec61305.em	sa		13 KB	EMSA File	8/14/2008 8:43 AM	
low, what was I soving	~^ ^	its	mc_spec61306.emsa mc_spec61307.emsa		13 KB 13 KB		EMSA File	8/14/2008 8:45 AM 8/14/2008 8:47 AM	
iow, what was i saying	y،	r					EMSA File		
		Places	mc_spec61308.em	sa		13 KB	EMSA File	8/14/2008 8:48 AM	
		naces	mc_spec61309.em	sa		12 KB	EMSA File	8/14/2008 8:49 AM	
			mc_spec61310.em;	sa		12 KB	EMSA File	8/14/2008 8:50 AM	
		¥	mc_spec61311.em	sa		12 KB	EMSA File	8/14/2008 8:51 AM	
			mc_spec61312.em	sa		12 KB 12 KB	EMDA FIIC EMSA Eilo	0/14/2008 8:52 AM	
			mc_specorors.em	50 59		12 KD 12 KB	EMBA FIR EMSA File	0/14/2000 0:55 AM 8/14/2008 8:54 AM	
			style.css	30		2 KB	Cascading Style Sh.	8/14/2008 8:26 AM	
						2.00	concerning only only	of a decorporation of the start	

Welcome to NIST DTSA-II version 1695

Basic operations

- Opening and manipulating spectral files
- Display of spectra

Welcome to NIST DTSA-II version 1695

Welcome to NIST DTSA-II version 1695

Basic operations

- Opening and manipulating spectral files
- Display of spectra
- Peak labeling (manual only)

Welcome to NIST DTSA-II version 1695

Basic operations

- Opening and manipulating spectral files
- Peak labeling (manual only)
- Exporting spectra for publication (Gnuplot)

Exporting spectrum for publication as gnuplot

Publication-quality graphics from Gnuplot

Comparing spectra from different EDS spectrometers, or from different dates from the same EDS: The issue of EDS calibration

- A spectrum is recorded with calibration data: eV/channel, zero offset, number of channels (depending on manufacturer, this data may or may not be embedded in the .msa header).
- When a spectrum is read into DTSA-II, the calibration information is checked against the current calibration. If there is a mismatch, a message prompts the analyst.

Spectrum Calibration

Welcome to NIST DTSA-II version 1695

The issue of EDS calibration

- A spectrum is recorded with calibration data: eV/channel, zero offset, number of channels (depending on manufacturer, this data may or may not be embedded in the .msa header).
- When a spectrum is read into DTSA-II, the calibration information is checked against the current calibration. If there is a mismatch, a message prompts the analyst.
- The analyst then has two choices:
 - 1. Change the detector selection to match the incoming spectrum
 - 2. Accept the incoming spectrum but display it according to the current calibration information. (Note: the incoming spectrum will retain its calibration data so that when it is the only spectrum being displayed, its own calibration will be applied.)

• Matching to a particular ROI

Welcome to NIST DTSA-II version 1695

Spectrum sub-sampling tool

- Take an experimentally measured spectrum and create one or more "sub-samples", that is, equivalent spectra that would have been collected at lower dose.
- Sub-sampled spectra are useful for statistical studies. e.g., how does detection limit vary with dose.

Background fitting tool

DTSA-II Simulation Mode

- EDS spectra calculated from
 - 1. First principles, using best available cross sections and physical data (flat, bulk target only)

Simulation Alien

♣ªNIST DTSA-	-II								
<u>File</u> Process	<u>T</u> ools <u>H</u> elp								
↑↑ ↑ ↓ ↓ ↓	Edit spectrum properties Assign <u>m</u> aterial Quantification alien <u>Simulation alien</u> Calibration alien Report <u>n</u> ote								
5 10	0								
15 20	ČÓ 2,000	4,000	6,000	8,000	10,000	12,000	14,000	16,000	18,000 20,0
Default Detect 8600 Probe EDAX_35mus -Spectrum List-	Spect	rum Properties						Lines Lines Lines Lines Lines Lines Lines Lines Lines Lines H Lin	Temporary Lines Selected Lines Clear All Lines

Simulation Alien: selecting Analytical Simulation

	∯°NIST DTSA-II		
ALC: NOT	<u>File Process Tools H</u> elp		
The second second	↑15-↑		
5	+ 10-	Spectrum simulation	×
5	→I←	First page	
5	5 10 15 20 0 2,000	Analytical Simulation	16,000 18,000 20,0
5	Spectrum Report Command Default Detector Sp 8600 Probe • EDAX_35mus •	 Monte Carlo model of a bulk, homogeneous material Monte Carlo model of a film on a bulk, homogeneous substrate Monte Carlo model of a sphere on a bulk, homogeneous substrate 	nes Element: Temporary Lines
5	Spectrum List	 Monte Carlo model of a cube on a bulk, homogeneous substrate Monte Carlo model of an inclusion in a bulk, homogeneous substrate 	Lines
5		Message: Select the type of spectrum simulation to perform. More Back Next Finish Cancel	ment Weight % Atomic %
ī			
H. COLOR	None All Clear		

Simulation Alien: specifying composition

Ē	🔹 NIST DTSA-II		_ 🗆 🗵
	<u>Eile Process Tools H</u> elp		
	★★ 15-★		
5	+ 10-	pectrum simulation	1
5	→I ← ↓ 5-	Previous: Simulation Mode	
6	↓↓	Next. msrament contiguration	
	15 20 0 2,000		16,000 18,000 20,0
6	Default Detector	Materials and Scale	nes Element: Temporary Lines H Selected Lines
6	Spectrum List		Lines Clear All Lines
6		Message: Specify the sample material and scale. More Back Next Finish	ment Weight % Atomic %
6			
[None All Clear		

Simulation Alien: target composition

Simulation Alien: instrument configuration

Simulation Alien: Other options not invoked

Simulation Alien

Simulation Alien

Simulation Alien: Other options invoked

Welcome to NIST DTSA-II version 1698

Simulation Alien

Simulation Alien

Welcome to NIST DTSA-II version 1698

DTSA-II Simulation Mode

- EDS spectra calculated from
 - 1. First principles, using best available cross sections and physical data (flat, bulk target only)
 - 2. Monte Carlo electron trajectory simulation for various specimen configurations:
 - 1. Flat, bulk
 - 2. Layer on bulk
 - 3. Inclusion (hemisphere) embedded in bulk
 - 4. Spherical particle on substrate
 - 5. Cubic particle on substrate

Detector thickness = 5 mm

Detector thickness = 5 mm

2.	NIST DTSA	-11						_	
Eile	Process	Tools	<u>H</u> elp						
1		10-							
		14-	2						
		12-	2						
	•				Spectrum simulation	×			
	T.	10-	6		Previous: Configure sample				
1	14	8-	6		Instrument configuration				
	- X.				Next: Other options				
	1	6-	6						
	×	10			Instrument Parameters				
		4-	5		Instrument 8600 Probe				
		2-	2		Detector EDAX_35mus				
5	10	20			Calibration FWHM[Mn Ko]=134.0 eV - initial				
15	20	0-) 1,1	000	Beam Energy 20.0 keV		8,000	9,000	10,0
Sp	ectrum Re	port	Command]		Probe Flux (current time) 100.0 nA second				
D	efault Deteo	tor —		Sp	Incident Angle 0.0 °	hes			
8	600 Probe		-	_		ines	Element:	Temporary L	Lines
E	DAX_35mus	8	-		Married	nes	Н	Selected Lir	nes
S	bectrum List						•	Clear All Lin	nes
					<u>Back</u> Next Finish Cancel		.5		
				1.01		Jsitio Elemen	on ot 1 Weigt	ot % Atomic '	%
					-	Liomor	ne noigi	ie io Piconie	
	None	All	Clear						
Dete	ector thickne	ss = 5	imm						

Simulation Alien: Monte Carlo simulation trajectories can be viewed with Cosmo Player

	Player 2.1.1 Getting Started Quick Reference Going Further Release Notes About Cosmo Player						
<u>Getting</u> <u>Started</u> <u>with</u> Cosmo	Getting Started with Cosmo Player 2.1.1 Copyright © 1997-1999 PLATINUM technology, inc. All rights reserved.						
<u>Player</u> <u>2.1.1</u>							
<u>On the</u> Dashboard	Cosmo Player plugs in to your Web browser to enable you to see and explore 3D worlds. With Cosmo Player you can visit any 3D world authored in the Virtual Reality Modeling Language (VRML). These 3D worlds often include other kinds of multimedia, like sound and movies.						
<u>Moving</u> <u>Around in</u> <u>a World</u>	This brief guide shows you the basics of the Cosmo Player main controls so you can get started right away.						
Examining Objects	You can find more in-depth information in Cosmo Player 2.1.1 Quick Reference and Going Further with Cosmo Player 2.1.1. You can find more technical information about installation and trouble-shooting in the Release Notes.						
<u>Changed</u> <u>Your</u> <u>Mind?</u>	You can practice using Cosmo Player by playing CHOMPY, an interactive 3D game that teaches basic navigation.						
Interacting with Active Objects							
Another	On the Dashboard						
Way of Moving Through a World	You use the main controls on the Cosmo Player dashboard to do two things: move around in 3D worlds and examine objects in 3D worlds. (Some worlds don't display the dashboard, but they may provide on-screen cues to navigation.)						

View along the beam

View along the beam

View from bottom of particle

DTSA-II Simulation Mode

- EDS spectra calculated from
 - 1. First principles, using best available cross sections and physical data (flat, bulk target only)
 - 2. Monte Carlo electron trajectory simulation for various specimen configurations:
 - 1. Flat, bulk
 - 2. Layer on bulk
 - 3. Inclusion (hemisphere) embedded in bulk
 - 4. Spherical particle on substrate
 - 5. Cubic particle on substrate

Detector thickness = 5 mm

Detector thickness = 5 mm

DTSA-II: Quantitative Analysis

- ZAF analysis against standards
- Standards are used to extract needed peak references for MLLS fit.
- Report contains pertinent data (ZAF factors, weight%, atom%, normalized weight%; 1σ statistics)

Efe Process Tools Ede by Sign gate mail Assign gate mail Cu_201/750pA35mu=1005 11 Quantification alien Signidation alien 31 Quantification alien Signidation alien 31 Quantification alien Report gate 4 Calbration alien Report gate 5 10 2,000 4 Color (Color (Col	ÎNIST DTSA-II							
Edit spectrum properties Assign gaterial Cu_20K/750pA35mu-s100s 11 Quantification alen Sinulation alen Report gate Cu_20K/750pA35mu-s100s 6,000 4,000 5 10 Calbretion alen Report gate Cu_20K/750pA35mu-s100s 5 10 0 2,000 4,000 6,000 10,000 12,000 14,000 16,000 20,000 5 10 0 2,000 4,000 6,000 10,000 12,000 14,000 16,000 20,000 Spectrum Report Command Spectrum Properties Image: Spectrum Propertie	<u>File Process</u> <u>T</u> ools <u>H</u> elp	File Process Tools Help						
Image: state of the s	Edit spectrum properation alien	erties					■ Cu_2(0kV750pA35mu-s100s
15 20 *6 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,0 Spectrum Report Command	 ★ 6,000- ↓ 4,000- ↓ 2,000- 5 10 							
Spectrum Report Command Default Detector \$600 Probe EDAX_35mus Spectrum List Adminum Window thickness 30 nm Atamuthal angle 0 ° Beam position(X) Beam position(X) Beam position(X) Detector EDAX_35mus-100s Beam position(X) Detector EDAX_35mus-100s Beam position(X) Detector EDAX_35mus-100s Beam position(X) Detector Detector area Detector inentation Detector inentation Detector thickness Detector window Detector thickness Detector thickness Detector window Detector thickness Detector window Detector window Display name Cu_20kV750pA35mu=100s Diane-Hunt Element List Element List Element List Element List Element List El	15 20 0 2,0	joo 4,ojoo	6,000 8,000	10,000	12,000	14,000	16,000	18,000 20
	Spectrum Report Command Default Detector 8600 Probe • EDAX_35mus • • Spectrum List • • Cu_20kV750pA35mu-s100s • • None All Clear	Spectrum Properties Name Acquisition time Aluminum layer thickness Aluminum window thickness Azimuthal angle Beam energy Beam position[X] Beam position[Y] Dead layer Detector Detector area Detector orientation Detector position Detector type Detector type Detector window Display name Duane-Hunt Element List Elevation	9/1 0 n 30 i 20 i 0 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Valu 3/03 9:16 AM n im weV wm X_35mus - FWHM[Mn K x_35mus - FWHM[Mn K 814,-0.000,0.582] 435,0.000,-57.493] m) itek AP 3.3 (manufactur 20kV750pA35mu-s100s 12 keV rbon, Copper]	e a]=134.0 eV - initial er's table)	KLM Lines	s Element: s Fe es I I I F on nt Weight 9	Temporary Lines Selected Lines Clear All Lines % Atomic %

-N File	IST DTSA	-II Tools	Help		
	Process	<u>1</u> 00IS 16- 14- 12- 10-		t.	Quantification Alien
→ ↓ 5 15	 I I	8- 6- 4- 2- 0-	1,1	<u>öoo</u>	Previous: Specify the instrument Specify standard spectra Select the element(s) for which Cu5-20kV750pA35mu-s200s is a reference. Sulfur - Selected H 51 U Be Antimony Al Si P 5 Cl Ar K Ca 5c Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As 5e Br Kr Rb 5r Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 5n 5b Te I Xe CS Ba Hf Ta W Re OS Ir Pt Au Hg TI Pb Bi Po At Rn Fr Ra 8,000 9,000 10,1
Spe Del 86(ED	ctrum Re Fault Detect D0 Probe AX_35mus ectrum List	port (tor All	Clear	Sr 	La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk CF Es Fm Md No Lr Ok Message: Specify standard spectra and the associated elements and compo Message: Specify standard spectra and the associated elements and compo More Back Next Finish Cancel Element Weight % Atomic %

Avenue Alexandre Ale	_ _ _ _ _
15- 15- 10- Duantification Alien	×
Image: specify reference specify re	rum
3 10 15 20 0 2,000 Spectrum Report Command C Element by difference	16,000 18,000 20,0
Default Detector SF Oxygen by stoichiometry Element Cation Anion As 8600 Probe Image: Second State	nes Temporary Lines Fe Selected Lines
Spectrum List	Lines Clear All Lines
Message: Specify an element to be handled specially More Back Next Finish C	ancel
None All Clear Welcome to NIST DTSA-II version 1698	

NIST DTSA-II			_ _ X
Elle Process Tools Help			
15-			
1			
Quantification Alien			×
→I ←	Previor	s: Select the unknown spectrum	
The r	esults		
T.		Finish	
**			
5 10 Normalization			
Spectrum Report Command	C Normalized weight percent	Atomic percent	
Default Detector Spectrum	Sum	5 Fe	[]
8600 Probe	. 100.10 ± 0.26 36.41 ± 0.0	9 03.09 ± 0.25	ines <u>E</u> lement: Temporary Lines
EDAX_35mus			nes Fe Selected Lines
Spectrum List			Lines Clear All Lines
			sition
Message:		More	ment Weight % Atomic %
	Back	ext Finish Cance	
None All Clear			
Welcome to NIST DTSA-II version 1698			
MIST DTSA-II File Process Tools Help			
---	---	---	
1 🔶 10-	Quantification Alien	X	
→I ← ↓ 5-	Previous: Select the unknown spectrum		
++	Finish		
5 10 15 20 0 2,0	Normalization O Weight percent C Normalized weight percent E Atomic percent	16,000 18,000 20,0	
Spectrum Report Command Default Detector 8600 Probe	Spectrum Sum S Fe Fe5-20kV750pA35mu 100.10 ± 0.26 49.89 ± 0.22 50.11 ± 0.26	nes ines <u>E</u> lement: Temporary Lines	
EDAX_35mus		Ines Fe Selected Lines	
r.	Message: More Back Mext Finish Cancel	sition 	
r.			
None All Clear			

Welcome to NIST DTSA-II version 1705

Welcome to NIST DTSA-II version 1705

NIST DTSA-II			
Eile Process Tools Help			
Cu-stdB_20kV20	JnAMed298kHz21DT100s		
20,000- User Information			
Quantitative algorithms Detector - BrukerQuadSDD_145eV Detector - QUAD SDD 5eV Detector - QUAD SDD 5eV			
Detector - BrukerQuadSDD_10eV Detector - BrukerQuadSDD_128eV Detector - BrukerQuadSDD_145eV Azimuthal angle 180.0 °			
Image: Second			
5,000- 5,000- Crystal parameters			
Detector Area 40.0 mm ²	9,000 10,0		
Spectrum Report Comm Default Detector Aluminum layer 10.0	1		
JEOL8500F Dead layer 0.0 µm BrukerQuadSDD-10eV Thickness 0.4 mm	Temporary Lines		
Spectrum List Cu-stdB_20kV20nAMed29 Edit the properties of this detector.	Clear All Lines		
OK Cancel Apply ig	ht % Atomic %		
Detector orientation [0.893,-0.000,0.451] Detector position [-61.436,0.000,-31.018] Detector thickness 0.45 mm Detector type Silicon Drift Detector			
None All Clear Detector window Moxtek AP 3.3 (manufacturer's table) Welcome to NIST DTSA-II version 1705			

🛃 NIST DTSA-II				
Eile Process Iools Help				
25,000-	Cu-stdB_20kV20nAMed298kHz21DT100s			
20,000-				
User Information User Information Quantitative algorithms Instruments and Detectors I5,000- ISOURSOUF Detector - QUAD SDD SeV	Detector - BrukerQuadSDD_145eV			
Detector - BrukerQuadSDD-10eV Detector - BrukerQuadSDD_128e'	Aluminum layer 10.0 nm			
10,000- 10,	Thickness 0.4 mm			
	Number of channels 4096 channels			
	Zero strobe discriminator 50.0 eV			
0 Spectrum Report Comm	Base Performance 9,000 10,0			
Default Detector	Zero offset -475.0 eV			
BrukerQuadSDD-10eV	Resolution 145.0 eV at Mn Ka			
Spectrum List Cu-stdB_20kV20nAMed29	Edit the properties of this detector.			
	OK Cancel Apply ight % Atomic %			
Detector orientation Detector position	[0.893,-0.000,0.451] [-61.436,0.000,-31.018]			
Detector thickness	U.45 MM Silicon Drift Detector			
None All Clear Detector window	Moxtek AP 3.3 (manufacturer's table)			
Welcome to NIST DTSA-II version 1705				